Creation of a Secure HIPAA-Compliant Bioinformatics System to Support a Bi-Institutional Biomarker Discovery and Correlative Quality of Life Study

Christian M Barlow, Martin Pellinat, Danny Armstrong, Alan Da Costa, Danielle Halsel, Christopher Malamet, Stephen M Hahn MD, Susan Prendergast, Lillie Lin MD, Ramesh Rengan MD PhD
Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
VisionTree Software, San Diego, CA

BACKGROUND

- The University of Pennsylvania’s Department of Radiation Oncology (UPENN) has established a cooperative Quality of Life and Tissue Banking initiative with the National Cancer Institute (NCI).
- This initiative was founded as a means to collect biological specimens and Quality of Life data from consented UPENN patients for the purposes of a bi-institutional biomarker discovery and correlative quality of life study.
- Collected specimens are de-identified, shipped, and stored at the NCI for future research.
- De-identified Quality of Life data, demographics, toxicities, and treatment parameters are collected in conjunction with each specimen and shared between institutions.

PURPOSE

- The goal of this project was to develop a bi-institutional, HIPAA-compliant, web-based informatics system to facilitate data exchange between UPENN and the NCI for the purposes of the Quality of Life and Tissue Banking initiative.

MATERIALS & METHODS

- A secure, web-based data management system (VTOC) provided by VisionTree Software, Inc. was used to collect, import, aggregate and report data in a patient-centric system.
- This secure, online patient portal was created to permit logon from any computer with internet access.
- Roles-Based Log-Ins were designed to allow four unique views in VTOC:
 1. UPENN view containing patient identifiers
 2. UPENN view without patient identifiers
 3. NCI view without patient identifiers
 4. Patient view to promote self-reported health information
- Test patient data with a de-identified case number and clinical information were manually entered into forms stored within the test patient’s web-based record by the primary institution (UPENN).

RESULTS

- Test patient view displayed QOL assessments auto-delivered via a templated system with corresponding reminders and educational material.
- Test patient QOL data was tagged with time point and demographic information and stored in the central database for reporting and analysis.
- Primary institution (UPENN) was able to log-in with two separate views: one with identifiers, one de-identified.
- Secondary institution (NCI) ran a test query to retrieve clinical outcomes data and upload comments to a test patient record identified only by case number.
- Reminders and report profiles were generated and shared between the two institutions in a HIPAA-compliant manner.

CONCLUSIONS

- UPENN maintained all identifiable Protected Health Information and both UPENN and the NCI were able to run secure queries of de-identified clinical and QOL outcomes data.
- Successful demonstration of the web-based system provided by VisionTree Software facilitated report generation, analytics, and record-specific comments.

CURRENT STATUS & FUTURE OBJECTIVES

- At present, protocol procedures have been implemented including subject enrollment and employment of VTOC for research data management.
- Future objectives relate to secure auto-population of patient form fields from hospital EMR as well as increased communication between patient and their medical team, with automated reminders being generated for completion of research protocol tasks.

RELEVANCE

Design and implementation of the bioinformatics system detailed above improves documentation and analysis of results in a manner that maximizes research potential while ensuring regulatory compliance. The architecture of this system encourages multi-institutional research initiatives to attain mutual goals.